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Chalmers University of Technology

ABSTRACT

Ion conducting glasses are highly interesting for several different applications, among
them, chemical sensors, smart windows with variable optical properties and as elec-
trolytes in batteries. The last example can take full advantage of the ease with which
a thin film (< 1µm) of glass electrolyte can be sputtered onto a substrate and thereby
provide power for micro-scale electronics, e.g., a chip on so called smart cards.
However, despite intense research there is still no fully satisfactory model for the
atomic mechanics governing the ion conduction in these materials. In many promis-
ing materials (e.g. nitrated phosphate films) we have not even access to good models
of their structure.

The aim of this thesis is to shed some light on both the structure and ionic proper-
ties of ionic oxide glasses. The structure is determined by a combination of neutron
and X-ray diffraction experiments together with the reverse Monte Carlo technique,
with which we can create structural models of the investigated glasses. These struc-
tural models can then be analyzed in terms of pair correlations, topology and pos-
sible structural inhomogeneities. Furthermore, the application of the bond valence
method to the structures yields vivid representations of the ionic pathways through
the structures. From these, not only estimations of the activation energy and con-
ductivity can be extracted, but also important information on coordination of mobile
ions and pathway topography can be gained. These techniques have here been used
for investigations of two different phenomena.

Firstly, when a network modified oxide glass, such as M2O-B2O3, is doped by a
metal halide salt, MX, a strong increase in conductivity can be seen. Earlier struc-
tural studies have shown how salt-rich channels through the oxide network is formed.
Our investigations show the distinctly different pathways in differently doped sys-
tems. Furthermore, we show that ordering of the glass beyond the nearest neighbors
play little role in ion conduction.

Secondly, the ever elusive mixed mobile ion effect (MMIE) has been placed
under scrutiny. The strong MMIE in a mixed Li/Rb meta-phosphate has been in-
vestigated in terms of the pathway topography and the blocking effect both at room
temperature and near the glass transition. A study of the weak MMIE in a Ag/Na
meta-phosphate system reveals the similarities in pathways for the two types of ions.
In this system we find no blocking effect and propose the existence of cooperative
Ag-Na pairs in the pathways.

Keywords:
Glass structure, Ion conduction, Bond valence method, Reverse Monte Carlo, X-ray
diffraction, Neutron diffraction, Phosphate glasses, Borate glasses
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CHAPTER 1

INTRODUCTION

Glasses are by no means new materials, they have been around on earth since it was
cool enough for the formation of the crust. One common natural source of glasses
are meteorite impacts, large enough to melt the sand and rock, which form glass as
it cools down. Large fields of strewn natural glass are many times linked to known
or speculated impact sites, e.g., the Tektite fields in Argentinean Pampa (1) and the
Dakhleh glass in western Egypt (2). Another source is volcanic eruptions in which
obsidian can form as the molten rock rapidly cools in the air. This hard, glassy ma-
terial, which form sharp edges when broken, has been used in stone age for various
cutting tools. Interestingly, obsidian is still used in modern surgical scalpels (3; 4).
Man made glasses started to appear in the region of modern Egypt, at least 9000
years ago. First admired for their beauty and used for decorative purposes, but with
time the skill of glass making grew and with new recipes and shaping techniques, the
uses of glasses diverged. However, when it comes to structural knowledge of glasses,
very little was know until powerful experimental techniques were developed in the
beginning of the last century.

Due to their simple structure, crystalline solids were generally the first to be
studied by these new techniques for structural characterization. Their static struc-
ture have been investigated by predominately X-ray but also neutron diffraction.
Their ideal structure (where all atoms are located in their equilibrium position) can
be constructed in terms of crystalline unit cells, typically comprising of 1-10 atoms
for simple ionic or metallic materials. Their dynamical properties and vibrational
modes can likewise be studied by means of, e.g., inelastic neutron diffraction or
IR/Raman and later modeled using the same simple crystalline unit cell. Since the
crystalline structure is well understood, the ionic conduction process in these mate-
rials can often be classified as being either of point defect or molten sublattice type
(cf. chapter 3)

In glasses and other amorphous materials on the other hand we have, despite
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1 INTRODUCTION

intense investigations, not yet reached the same level of understanding as of the
crystalline state. Partially this is due to the inherent disorder of the materials which
breaks the symmetries of the crystal state that make its description so easy. A large
part of the vocabulary developed in crystallography (e.g. interstitial, vacancy, recip-
rocal lattice, crystal defects) to describe the structure and its properties have little
or no meaning when applied to amorphous materials, whereas some terminology
(e.g. inter-atomic distance, coordination number) may be given a slightly broader
definition and still have a place in the description of the glassy state. Similarly, the
ionic transport can not be described in the crystallographic terminology since terms
as vacancy and interstitiallity no longer have a well defined meaning.

The problems of classifying amorphous materials and their properties also stem
from the problem of creating realistic structural models of the glassy state. Instead
of creating an ideal structure as can be done for crystals, we have to create structural
models that can reproduce as many of the properties of the glass as possible. In the
early days of glass science, models were of a conceptual kind and were mostly based
on the chemical knowledge of preferences of bonds made by the atoms in the glass.
Among the more successful models are the continuous random network model intro-
duced 1933 (5) that to this day is used to describe the structure of network forming
glasses, and the dense random packing of hard spheres model which describes ionic
and metallic glasses quite well. These kinds of simple models capture the essential
structural features of glasses, but cannot fully account for advanced properties such
as vibrations, relaxations and diffusion.

With the advances made in microelectronics, computer models have become a
valuable tool for modeling both static structures as well as dynamics in complex
molecular systems. With techniques such as molecular dynamics (MD) simulation
and reverse Monte Carlo (RMC) modeling (cf. section 5.1), quantitative models of
glasses that reproduce many of the experimentally observed features may be con-
structed. With MD simulation, microscopic processes such as ionic transport and
structural relaxation can be studied in greater detail than what most experimental
techniques allow (due to their space and time averaging). Furthermore, one can
study the detailed movement of a single ion through, e.g., a glass and thereby in-
vestigate details of the conduction pathways and equilibrium sites of the ion, but the
simulations can only follow the ion over a limited period of time, and for disordered
systems, important features of conduction pathways may be overlooked.

In this thesis, we instead try to classify the conduction pathways in glasses start-
ing from a static structure model (here modeled by the RMC method, cf. section
5.1.3 and calculate the pathways by means of bond valence pseudo potential calcu-
lations (BV, cf. 5.2, a method that previously has proved to be a valuable tool in
structure determinations. The advantage of pathway calculations by the BV method
over MD is that from BV, all possible diffusion pathways are found, rather than
only those who are visited by an ion in the MD approach. The pathways give a vivid
picture of where the ionic transport occurs in the glass. From the volume of the path-
ways, estimations of the ionic dc conductivity and activation energy can be made,
and detailed studies of the pathways have given further insight into various aspects
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of ionic conduction. For instance, the so-called mixed mobile ion effect the relation
between intermediate range order and conductivity in salt doped glasses have been
explored.
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CHAPTER 2

The Structure and Formation of Glasses

2.1 Glasses and Amorphous Materials

Although the term ’glass’ is often used to refer to silicate based glasses, its true
meaning is much broader than this. There are several definitions of a glass, but here
we will adhere to the definition given in ref. (6)

A glass is an amorphous solid which exhibits a glass transi-
tion

Now we need to define amorphous, solid and glass transition, but before do-
ing that it can be illustrative to make a brief review of another phase of matter; the
crystalline state. Most crystalline materials are quite well understood due to their
relatively simple structure. The atomic arrangement in crystals is described in terms
of a crystallographic lattice, i.e. a distribution of points (lattice point) in space such
that every point has an identical surrounding. The set of lattice points can be de-
scribed by

r = n1a1 +n2a2 +n3a3, (2.1)

where ni are integers and ai are the basis vectors of the lattice.
There is a total of 14 different regular arrangements of identical points that fill 3d

space and these are called the Bravais lattices. Most crystals however contain more
then one type of atom, and their positions can be described by associating each point
of the correct Bravais lattice with a set of j atoms, a so called basis, R. The atomic
positions are then

r = n1a1 +n2a2 +n3a3 +R j, (2.2)

where R j is the position of atom j in the basis, relative to the lattice point. This gives
us a complete description of the atomic arrangement in an ideal crystal, and since all
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2 The Structure and Formation of Glasses

lattice points are symmetrically identical, the volume spanned by the basis vectors
is sufficient to give a complete description of the crystal, although one often chooses
a slightly larger unit cell of convenience. In reality though, the actual positions of
atoms differs slightly from their ideal due to thermal vibrations and crystal defects
(vacancies, substitutions etc.) but these deviations from the ideal case can often be
neglected.

The perfect translational symmetry in the ideal crystal, where identical unit cells
are repeated ad infinitum also implies that all crystals have discrete rotational sym-
metry. This anisotropy can be readily seen in macroscopic samples. Since the veloc-
ity of light traveling through a crystal depends on its direction, crystalline materials
are not suitable for e.g. optical lenses, and when crystals break, they usually do
so along specific directions - along the lattice planes. And this anisotropy can also
extend to e.g. ionic transport. Many crystals have preferred directions of ionic dif-
fusion with pathways that sometimes are 2 or even 1 dimensional.

When a crystal is heated each atom will be given a higher vibrational energy
and at a specific temperature, the melting temperature Tm, the thermal energy is
large enough to break (some of) the bonds in the crystal. Since all unit cells are
equivalent, this bond breaking would for a perfect heating occur simultaneously in
all equivalent bonds, and the transition between solid and liquid is marked by a
discontinuity in observable quantities such as viscosity, molar volume and entropy.
Thermodynamically, this is a so called first order transition.

Now that we know what a crystal is, we can turn our attention to the amorphous
state as it is easiest defined as being ’not crystalline’. This group of materials lack the
long range order that crystalline materials posses, and are thus impossible to describe
in terms of simple unit cells. It is however worth noticing that these materials still
have some degree of ordering, on short lengths scales even a considerable amount,
as we will see in the next section.

Solid has a rather intuitive definition to most of us. In a macroscopic perspec-
tive, we may define a solid material as a material that does not flow under stress.
While moderate forces acting on a sample will deform it, the deformation is re-
versible and the sample will return to its original form once the forces are removed.
We know however that many solids may change their form if the acting forces are
strong enough, but the deformations are not due to flow, but creep, a process where
the bonds within the material are broken and reformed in new configurations. Al-
lowing even stronger forces, we will ultimately break the solid into fragments. On
an atomic scale, however, it is somewhat more difficult to separate the solid state
from the liquid. In the case of crystalline materials, we have a distinct, 1st order
thermodynamical transition between the liquid state and the solid crystalline state.
The liquid is composed of atoms, ions or molecules that are loosely bonded to each
other. Bonds between these units are broken and formed continuously in time and
although structures of several molecules may form, they are rarely stable for any
extended period of time, e.g., heterogeneity in water (7). In crystals on the other
hand, all atoms are in fixed positions and bond breaking is very rare. In other cases,
the distinction between liquid and solid is not as clear. Liquid crystals are in a con-
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2.1 Glasses and Amorphous Materials

densed state that poses long range order, like the crystalline state, yet many of them
have flow properties similar to those of liquids. Furthermore, upon cooling many of
them exhibit more than one liquid crystalline state before they freeze to a solid (cf.
(8)).

Yet another example is pitch. In room temperature most of us would mistake
pitch for a solid; it resist moderate forces and shatters if struck by e.g. a hammer, but
is in fact a liquid of high viscosity as is demonstrated in the pitch drop experiment[6,
7] where pitch is slowly dropping out from a glass funnel. In the past 76 years, 8
drops have fallen so far. For this reason, solids are also commonly defined by the
somewhat arbitrary requirement that they should have a shear viscosity of at least
1013.6 Pa s.

The final criterion for a glass is that it exhibits a glass transition. When a melt is
cooled, the viscosity of the liquid increases since the lower temperature allows more
stable (although still temporary) bonds to form between atoms, ions or molecules. If
the cooling is slow compared to the timescale of structural relaxations in the liquid
(proportional to the viscosity), a nucleation and growth process can create a crys-
talline structure at the melting point (Tm). However if the cooling is rapid, we may
supercool the liquid. When the viscosity becomes high enough, the liquid cannot re-
lax to the energetically favorable crystalline state and is thus trapped in a liquid like
state. As temperature is lowered further, viscosity increases and eventually the melt
will go through the glass transition and form a glass. The glass transition is charac-
terized by a near discontinuity, e.g., in the heat capacity (Cp) and thermal expansion
coefficient (κ) as showed in figure 2.1, while other quantities such as molar volume
(plotted against temperature) experiences a change of slope. The exact definition of
the glass transition temperature (Tg) varies somewhat, but one common definition is
to set Tg at the center of the discontinuity. The exact nature of the glass transition is

Tg
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Figure 2.1: Change in Cp at Tg for two different glass formers. Cf. figure 4.1(left) and
the temperature–relaxation time relation for three glass formers of different fragility. The
fragility of a supercooled liquid depends strongly on the bonding strength between atoms
and/or molecules in the material. A strong liquids exhibit an Ahrrenius temperature de-
pendence of the structural relaxation time (or viscosity), whereas a fragile liquid exhibits a
pronounced non-Arrhenius behavior.
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2 The Structure and Formation of Glasses

however not fully understood. The perhaps most commonly accepted model is the
kinetic theory outlined above, but there are several other models that each focus on
different aspects of the transition. As a melt cools into a glass, extensive thermody-
namical variables such as volume, entropy and enthalpy are continuous through the
transition, unlike in the first order liquid-crystal transition where they are discontin-
uous at the melting point. The derivatives of these quantities (heat capacity, thermal
expansion coefficient etc.) are however nearly discontinuous, suggesting that the
glass transition is in fact a second order thermodynamical transition. However this
is contradicted by the fact that the glass transition temperature depends on the history
of the glass, such as the cooling rate. Arguments based on entropy suggest that there
is an ’ideal’ glass transition temperature. At this hypothetical transition tempera-
ture, the liquid would have the same configurational entropy as the corresponding
crystalline state.

So, what substances form a glass phase when cooled? A glass is formed if the
cooling rate is fast compared to the rate of nucleation. Hence, liquids which easily
crystallize, such as water, have to be very rapidly cooled below their melting tem-
peratures to prevent crystallization, whereas other liquids, such as B2O3, are, in fact,
difficult to crystallize and are therefore easily cooled down to the glassy state. In-
deed, it has been hypothesized that all substances that can form a solid, can also be
produced in glass phase, given high enough cooling rate.

2.1.1 The Order of Disorder

Let us now take a closer look at how glasses are structured on an atomic level.
Glasses and other amorphous materials are defined by their lack of long range order,
but that is not to say that they completely lack ordered structure. On the contrary
some glasses, in particular covalently bonded glasses can have a significant amount
of order on length scales of up to 20 Å, and density fluctuations in the material can
be relevant on even longer length scales. Here we will take a closer look at what
order we do have in glasses and where the disorder comes in.

On the shortest length scale we have the order among nearest neighbor atoms
in the glass. This range of order is called the short range order (SRO) and thus
contains information on the distances and relative angles to the nearest neighbors of
any atom, as well as the chemical specie of these neighbors. The SRO in glasses is
highly dependent on the kind of glass we are discussing. Metallic and ionic glasses
are composed of atoms bond together by mainly non-directional forces. In ionic
metals, Coulomb forces between the differently charged ions binds the atoms to
each other and in metallic glasses the attractive potential comes from the sharing of
their valence electrons. The distribution of atoms in these two types of glasses can
be described rather well by a dense random packing of spheres model (DRPS)(9)
and the SRO present in these glasses thus only determines the nearest neighbor dis-
tances between atoms. In covalent glasses there is more to the SRO than nearest
neighbor distances. Covalent bonds are highly directional and the distances and an-
gles between anions coordinating to a single cation are in general very well defined.
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2.1 Glasses and Amorphous Materials

?

?

Figure 2.2: Depiction of bond distortion between two planar, corner-sharing polyhedra,
showing bond angle (θ) and rotational (φ) distortions. c©D. Staykova.

The basic building blocks in these glasses are thus basically the same as in the cor-
responding crystalline phases, i.e. coordination polyhedra with a cation in the center
and anions located at the corners, see section 2.2.

The intermediate range order (IRO) stretches over the range of ca 5-20 Å and
describes for instance the connectivity between covalent polyhedra, are they corner,
edge or even face-sharing, and what is the bond angle between them? While the
length of the bonds in general is well defined due to relatively large changes in bond
energy with bond length, distortions in the bond angles (θ) and rotational distortions
(φ) (see figure 2.2) require less energy and is thus more frequent. These distortions
of the connections of polyhedra yield a structure that differs from the corresponding
crystal, and thus the disorder in covalent glasses is created.

IRO may also arise from superstructural units of several coordination polyhedra,
such as rings or clusters. An example of such superstructural units is the boroxol
ring which is a part of the vitreous B2O3 structure [9]. Other types of correlations
may emerge from relatively well-defined distance between different chains of co-
ordination polyhedra. Such correlations are obvious in e.g. Ag2O modified borate
glasses where the metal ions create a typical distance of 5 Å between neighboring
borate chains, an order that can be observed for length-scales up to 10-20 Å (see
papers II and III and references therein).

At even greater length scales > 20 Å we enter the long range order (LRO) in
which few glasses show any features. Still, some glasses may exhibit weak density
fluctuations that may be of interest to characterize. In particular, possible clustering
of, e.g., metal ions may occur on these length scales.
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2 The Structure and Formation of Glasses

2.1.2 Quantifying Correlations

Glasses and other amorphous materials can, as we have seen, not be described in the
simple unit cell scheme that has proven useful for crystalline materials. Instead, we
may describe the order in the material by means of correlation functions.

The density function, ρ(r), is defined such that given that there is an atom at
r = 0, then the number of atoms within the small volume ∆V around the position R
is expected to be ∆V ρ(R). This implies that

∫∫∫

sample
drρ(r) = N, (2.3)

where N is the total number of atoms in the sample.
Note that ρ(r) is an average over all atoms in the system. Since we are here

interested in describing an isotropic system where each atom has a unique surround-
ing in terms of coordination and orientations, ρ(r) is spherically symmetrical and
we may drop the vector notation altogether and concern ourselves with ρ(r), where
r = |r|, a function of distance alone.

At radii below the shortest nearest neighbor distance ρ(r) ≡ 0 since no correla-
tions exist at these distances. At larger radii, ρ(r) exhibits an oscillatory behavior
that, in amorphous materials and liquids, is dampened with increasing radius and
approaches the average density, ρ0.

Other correlation functions can be derived from the density function, such as the
radial distribution function (RDF), defined as

J(r) = 4πr2ρ(r), (2.4)

and the reduced radial distribution function (rRDF),

G(r) = 4πr(ρ(r)−ρ0). (2.5)

J(r) increases rapidly for large r values, but is useful in the investigation of
nearest and next-nearest neighbor coordination shells since an integration over the
peak directly gives the number of atoms in that coordination shell. G(r) on the
other hand oscillates around zero, but the linear r-term amplifies small peaks at
higher radii, making them easier to discern than from the density function directly.
Furthermore, the rRDF is often used in neutron and X-ray discussions since it is
related to the structure factor S(Q), a correlation function in reciprocal space (cf.
section 4.4.1).

These correlation functions also exist in atom-specific forms, such as the partial
density function ρi j(r) which is defined such that given that there is an atom of type
i at r = 0, then ∆V ρi j(R) is the average number of atoms of type j within the volume
∆V at distance R. Correspondingly, the partial RDF, Ji j(r), and partial rRDF Gi j(r)
can be defined by insertion of ρi j(r) into equations 2.4 and 2.5.

10



2.2 Covalent Glass Models

2.2 Covalent Glass Models

Covalently bonded glasses are an important group. The basic structure is that of a
well defined coordination tetrahedron where a central cation is coordinated to sur-
rounding anion. Covalent bonds are strong and highly directional meaning that the
tetrahedra are only slightly distorted by addition of different modifiers and/or glass
preparations. Additionally, in the unmodified glasses, each tetrahedron shares at
least three of its anions, thereby not only creating a strong network, but also a high
viscous melt which make them excellent glass formers. Here, we will look at two
conceptual models for this glass type and compare the models to the experimentally
verified structures of phosphate and borate glasses.

Conceptual structure models are simple qualitative descriptions that aim to ex-
plain some of the features of real glass samples. Though many of them can be
explained using only a few sentences, they can be surprisingly accurate in their pre-
dictions of at least parts of the glass behavior. Here, we will discuss the structure
of covalent glasses from the standpoint of two such models, the continuous random
network model (CRN), that describes covalently bonded glasses on the form AxBy
(A=B,P,Si,W,...; B=O,S,F,...), and the modified continuous random network model
(MRN), which addresses glasses that have been network modified by metal oxide.
Both of the models give a vivid picture of the glass structure that (with minor mod-
ifications) is still valid today. We will also discuss how the structure is affected by
the introduction of additional metal halide salts.

One of the perhaps most fundamental papers in structural glass science was writ-
ten by Zachariasen in 1932 (5), where he presented what would later be known as
the continuous random network model of covalent oxide glasses of type AxOy

∗. At
the time, many assumed that the atomic arrangement of glasses would follow the mi-
crocrystalline model, or the related crystallite model, according to which the atoms
were arranged in nano-scale crystal-like structures (≈15 nm in diameter), with an
amorphous grain boundary as their interfaces. This model, however, does not agree
well with several experimental observations. Zachariasen argued that the forces
keeping the structure together in a glass should be similar to those in the corre-
sponding crystal, and that the glass should be built up of a 3d network similar to that
found in crystals, but lacking their periodicity. Studying the topology, Zachariasen
concluded that for a glass (covalent oxide glass) with an energy comparable to that
of the crystalline state, four rules should be met:

1. An oxygen is linked to not more than two atoms

2. The number of atoms surrounding atom A must be small

3. The oxygen polyhedra share corners with each other, not edges or faces

4. At least three corners in each oxygen polyhedra must be shared.

∗The less common sulphide glasses, AxSy have a similar structure and can also be described by
the CRN model
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2 The Structure and Formation of Glasses

b)a)

Figure 2.3: A 2-dimensional A2O3 crystal on the left, and on the right the corresponding
CRN model

Due to the absence of crystalline materials with a octagonal or cubic oxygen polyhe-
dron that can be easily prepared in a vitreous state, Zachariasen concluded that rule
2 thus only allows triangular and tetrahedral coordination polyhedra.

Figure 2.3 shows a 2d representation of a A2O3 compound in a) its crystalline
state and b) its glassy state according to the CRN model. In both cases all the bonds
are of the same type and there are no dangling bonds in the structure, the difference
is the slight distortions of bond angles that break the translational symmetry in the
glassy state. The model predicts correctly that oxides of types A2O3 (provided that
the oxygens form triangles around A), AO2 and A2O5 (provided that the oxygens
form tetrahedrons) will form glasses.

Zachariasen also addressed the formation of glasses where a network modifier,
i.e. an oxide such as Na2O that does not easily form a glass on its own, has been
added. He assumed that adding the network modifier would cause the perfect net-
work to break the A–O–A bridge and thereby form two non bridging oxygens (NBO)
according to [A-O-A + O2−→A-O− ... −O-A]. The modifying cation would mainly
occupy voids in the structure and only be loosely bound to the non-bridging oxygens.
However, later studies revealed that the modifier cations occupied sites specific to
the cation and that the environment of these sites complemented the environment of
the non bridging oxygens. This prompted Greaves (10) to introduce the modified
random network model (MRN). In this he asserted that the glass with network mod-
ifiers would be comprised of two interlaced sub-lattices; a network region where the
connectivity and network structure is the same as in the unmodified glass, and a net-
work modifier region made up of modifier atoms. Figure 2.4 shows a schematic 2d
representation of the model. Channels of non bridging oxygens, bonded to the mod-
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2.2 Covalent Glass Models

Figure 2.4: The modified random network model, with the network regions (shaded in gray)
and the metal ions (black) binding to NBO:s of the network

ifier cation run through the glass. These channels are lines of easy shear and thus
lower the viscosity of the glass, and if they extend throughout the glass, they can
also provide pathways for ionic conduction with lower activation energy than that
found in the unmodified region. The MRN model describes the network modifica-
tion well for some glass formers such as silica and phosphate, but need modification
in borate glasses as we shall see later. The MRN model of metal-oxide modified
glass structures still stands today, supported by later studies such as Swenson et al.
(11; 12), Cormack et al. (13) as well as the papers appended in this thesis.

2.2.1 Phosphate Glasses

Phosphate glasses are interesting materials due to their low Tg (as compared to sil-
ica), their ability to reach high ionic conductivity at room temperature through var-
ious additives, and their relatively high thermal expansion making them interesting
for hermetic seals. A serious drawback in applications of phosphates is their hygro-
scopic nature where H2O addition causes a depolymerization of the network. An
oxygen bridge is then broken into two OH− groups, similar to the depolymerization
caused by M2O modification.

Vitreous P2O5

The basic building block in the phosphate glass, P2O5, is a tetrahedron with a central
P5+ ion, coordinated to four O2− ions, three of which are bridging oxygens, and
one double bonded, non-bridging oxygen (see fig. 2.5). The P2O5 thus forms a 3
dimensional network where the three BO:s are shared with three other phosphate
groups. (14)
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2 The Structure and Formation of Glasses

Figure 2.5: Phosphate tetrahedron, NBO at top

Oxide Modification

Addition of a network former of type M2O with a monovalent metal ion leads to
a depolymerization of the network where the added O2− ion reacts with a bridging
P–O–P group to create two NBO:s (15). The modified glass closely resembles the
modified random network model where network regions are held together by the,
compared to covalent bonds, weaker ionic NBO–M+–NBO bonds. This is readily
seen in Tg which drops from 653 K to ca 520 K already at a 10% modification
concentration in a Li2O modified glass ( i.e R = [M]/([M]+[P])=0.1 ) and reaches a
minimum at ca 20% modification (14). The following increase in Tg up to R = 0.5
may be interpreted as an increased entanglement of PO chains.

At the metaphosphate composition, R = 0.5, the 3d-network has been reduced to
a (theoretically) infinite 1d chain structure where all phosphates coordinate to two
BO, one single-bonded NBO and one double-bonded NBO. In physical glasses how-
ever, the chains are usually restricted in length to ca 100 phosphates (with careful
preparation up to 1000) terminated by a hydroxyl group. The existence of ring-
shaped chains have also been proposed.

With increasing modifier content, the network further depolymerizes by short-
ening the length of the average chains until the R = 1 composition is reached, where
the phosphate is reduced to individual PO4 tetrahedra, bonded together only through
the ionic O−–M+–O− bonds.

2.2.2 Borate Glasses

Borate glasses are strong network formers with a relatively low glass transition tem-
perature of 260◦C which make them suitable model systems. Highly salt doped
borates reaches room temperature conductivity of 10−2S/cm (see papers II and III).
While uncommon as a major component, they are frequently mixed with other glass
formers to alter their properties. In silica glasses, a borate mix provide higher me-
chanical, thermal and chemical stability.
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2.2 Covalent Glass Models

Vitreous B2O3

B2O3 form a flat, triangular structure where the central B3+ is coordinated to three
O− ions which all are shared by other borons. How these triangular structures link
together have been a subject of debate. One model, proposed by Krogh-Moe pro-
poses that borate glasses largely are built up from cyclic B3O6 boroxol rings, exper-
imentally supported by features of vibrational and NMR spectra. Chason et al. (16)
have instead proposed a planar, ribbon like structure where boroxol ring may occur,
but are of no significance to the model. Even today, there is no consensus of the
borate structure (e.g., (17; 18; 19; 20)).

Oxide modification

Upon introduction of M2O modifiers into the borate glass, its behavior is opposite to
that of the phosphate glass. Tg actually increases with increased modification up to
a modifier ratio of R = [M]/([M]+ [B]) = 0.15−0.20. Likewise, the thermal expan-
sion coefficient drops to a minimum at R =0.15–0.30 in alkali oxide modified borate
glasses, whereafter it increases rapidly (21). Both features indicate an increase in
stability of the glass. The explanation is that the introduced oxygens do not break
the network as in P2O5 systems, but instead converts the 3-coordinated borons into
4-coordinated boron tetrahedra with all four oxygens bridging. This conversion is
supported by NMR (22; 23; 24), vibrational spectroscopy (25; 26; 27) and diffrac-
tion (11) investigations as well as MD simulations at various temperatures(28). At
R > 0.4 the number of tetragonal units start to decrease while triangular units with
one or two NBO increase. At the higher modifier contents, the borate structure is
fairly well described by the MRN model.

2.2.3 Halide Salt Doping

A common way of increasing the ionic conductivity of network modified (M2O)z-
AxOy glasses is to introduce a metal halide salt of the mobile ion, MX†. The result-
ing change in conductivity is dramatic, e.g., the room temperature dc conductivity
of xAgI-AgPO3 increases from ca 10−5 S/cm at x=0 to 10−2 S/cm at x = 1.5 (29).
Additionally, the introduction of the salt is commonly accompanied by a significant
drop in Tg. Experimental studies have shown that the dopant ions do not partici-
pate in the network formation, and the SRO of the glass network is not significantly
altered (30). This suggests that the introduced halide ions reside in the volume be-
tween the network regions and expand the channels described in the MRN model.
Such a model would also explain the drop in Tg, which then is caused by the break-
ing of the ionic O−–M+–O− bonds between different network regions due to the
expansion of the channels. How the network expansion occurs is highly dependant
on the type of metal ion involved, and has been a matter for controversy (see e.g. ref.

†Here, M is a monovalent cation, e.g., an alkali metal, Ag, Au, et c.
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2 The Structure and Formation of Glasses

(31) and references therein). In papers II and III the addition of MX to M2O-B2O3,
(M=Ag, Li, Na, X=I, Cl), is discussed in greater detail.
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CHAPTER 3

Ionic Conduction in Solid electrolytes

3.1 Crystalline Ion Conductors

Ionic conduction has been known for quite some time to exist in crystalline mate-
rials. The relatively simple structures of ideal crystalline ionic conductors have led
to a relatively extensive knowledge of the diffusion mechanisms in these materials.
The diffusion processes in most crystalline ionic crystals are dependent on the exis-
tence of crystal defects as the direct anion–cation exchange mechanism, as depicted
in figure 3.1, requires a far too large activation energy to contribute substantially to
the ionic mobility.

Ionic crystals can be divided into two main groups, thermally activated defect
types or molten sublattice types, depending on the number of defects that participate
in the conduction mechanism. In the point-defect type, the number of defects is low
(10−5–10−3 mole per cent) and the ionic transport is mediated through thermally
generated defects, mainly either Schottky pairs (32), where an anion–cation pair is
missing from the lattice, or Frenkel defect pairs (33)where an ion has moved from its
lattice position and resides in an interstitial position in the crystal, leaving a vacancy
in the lattice, both shown in figure 3.2. The concentration of these defect types is
temperature dependent and follow the same relationship;

c1c2 = e−
Hf−T S f

kBT , (3.1)

where c1 and c2 are the concentrations of each defect in the pair, and H f and S f are
the enthalpy and entropy associated with the formation of a defect pair (of Schottky
or Frenkel type). In a pure crystal with a low concentration of compositional impu-
rities in relation to the number of thermal lattice defects, the concentration can be
expressed as

c1 = c2 ≈ e−
H f /2
kBT , (3.2)
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Figure 3.1: Thermally activated diffusion mechanisms in crystalline conductors; a) Direct
anion-cation exchange b) Vacancy mechanism c) Interstitial mechanism and d) Intersticialcy
mechanism
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Figure 3.2: a) Schottky defect where an anion–cation pair is missing from the crystal and b)
Frenkel defect pairs of a (here) cation who migrated from its ideal position, leaving a defect
behind.
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3.2 Conduction Models in Glasses

Since the number of charge carriers is directly related to the total conductivity, it
will also follow an Arrhenius behavior in this case.

Figure 3.1(b–d) displays three commonly cited, defect mediated diffusion mech-
anisms in solids with a low defect concentration. In the vacancy mechanism (figure
3.1b) a nearby ion jumps into a Schottky vacancy, leaving a new vacancy in its
wake, a process that equally well can be described as the diffusion of a vacancy
defect through the lattice. In the interstitial mechanism (fig. 3.1c) the ion moves
between interstitial sites, whereas in the interstitialcy mechanism (fig. 3.1d) an ion
moves from an interstitial site to an occupied lattice site, thereby pushing the ion
residing at that position into another interstitial site. Apart from these three, there
are also suggestions for mechanisms involving several ions at interstitial sites.

In the molten sublattice type of FIC, with a high defect concentration, the defects
are not generated by thermally induced disorder. In these materials, there is a large
number of possible sites for mobile ions and they can diffuse freely in this sublattice
of vacancies. A prime example of such materials is the high-temperature α-phase
of AgI. Here, the iodine ions form a regular body-centered cubic lattice with a total
of six energetically equal Ag sites per Ag ion. This abundance of vacant sites form
the molten sublattice and due to the much smaller size of Ag vs I ions, Ag ions are
free to jump to any one of the four nearby sites with a low probability that the target
site is occupied∗. The activation energy is here related to the energy barriers in the
potential landscape and not the creation of vacancies and charge carriers.

While the mechanisms of conductivity have been known for quite some time
(Frenkel and Schottky presented their work in 1926 and 1935), the interest in crys-
talline ionic conductors was quite low since most known crystals showed a low con-
ductivity. This changed in the mid 1960th with the discovery of several fast silver
ion conductors (35). Among them RbAg4I5 (36; 37) with a room temperature con-
ductivity exceeding 0.1 Scm−1, to this day the fastest known solid RT conductor
(see fig. 3.3). These materials all exhibit a molten sublattice mechanism for the Ag
conductivity. These new materials were hoped to facilitate new types of batteries
and fuel cells, a rapid expanding field during the 1970th oil crisis, but they have yet
to fulfill these promises. Primarily this is due to the difficulty of producing single
crystals in the desired shape or large enough sizes for many applications. Problems
that glassy FIC (to some extent) do not have.

3.2 Conduction Models in Glasses

Glassy ion conductors are of interest due to the desirable properties they have over
crystalline materials, many of which already are covered in chapter 2. These include
the possibility to fine tune their mechanical, thermal and conductive properties by
by itroducing different types of additives, as well as the ease of producing thin films
in desired shapes on substrates by sputtering or vapor techniques etc. The fastest

∗3-dimensional visualizations of the Ag diffusion pathways are shown in figure 5.3 (calculated
by the BV method) and in ref. (34) (first-principles MD)
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Figure 3.3: DC conductivity for a number of crystalline FIC materials. The discontinuities
are due to phase transitions, e.g., the α–β transition of AgI

conducting glasses display room temperature dc-conductivities of up to 10−2S/cm,
which make them interesting for applications as solid electrolyte in, e.g., micro-scale
batteries. However, unlike the crystalline ion conductors, the conduction mechanism
in glasses still lack a universally applicable theory. Several models have been pro-
posed and I will here give a short overview of a few of them.

The earliest models were influenced by the structural models available at the
time. Starting from the micro crystalline or crystallite structural models, it would of
course be natural to use the models for conduction in crystalline materials, referring
to the corresponding crystalline mechanics, but as these structural models fell out
of flavor, so did the corresponding conduction models. Almost the opposite is sug-
gested in the cluster bypass model (38; 39) which asserts that small liquid regions
remain in the glass even below Tg, and fast ion conductivity is related to liquid-like
diffusion through liquid channels in the glass. Indeed somewhat bold to propose that
liquid-like relaxations may take place at these temperatures. The cluster model and
the diffusion pathway models both address the highly conducting AgI doped glasses
by assuming that regions of iodines are formed providing Ag with mainly iodine
coordinated, low Ea, conduction pathways. In papers II and III, however, we find a
preference for mixed coordination of the Ag ions.

Other models of conductivity deserve a more in-depth discussion. The weak and
strong electrolyte models are of a great conceptual value in explaining the origin
of the activation energy, Ea, and the dynamic models (dynamic structure model,
jump relaxation model and the unified site relaxation model) have had some success
in explaining the origin of the mixed mobile ion effect, discussed in section 3.3.
The bond-valence method, which we have used ourselves, will be discussed later in
section 5.2
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3.2 Conduction Models in Glasses

3.2.1 The Anderson-Stuart Model

The total conductivity in an electrolyte may be expressed as

σ = Neζµ, (3.3)

where N is the density of mobile ions, eζ is the charge of each ion and µ is the
mobility. There is thus two different contributions that may lead to the temperature
dependent behavior of ionic conductivity; either there is an increase in the number
of mobile ions with increasing temperature or there is an increase in the mobility of
each ion.

The Anderson-Stuart (A-S) model (40) (or strong electrolyte model as it is also
called) assumes that the mobile ion concentration is roughly constant due to a full
dissociation between the mobile ions and the network (or salt in the case of a doped
glass). The activation energy is here identified as a combination of a strain energy
and a Coulomb attraction energy that an ion must overcome to jump from one site
to the next.

Thus, for an ion to move from a site at anion A to anion B, it must first overcome
the energy of Coulomb attraction from the anion at the A-site, Ec. Furthermore, a
strain energy Es is associated with the opening of a doorway, i.e. moving the two
BO:s in the center of figure 3.4 aside, to allow the cation to pass through. The total
activation energy for the jump is then the combination of these two energies.

3.2.2 Weak Electrolyte Model

The weak electrolyte model instead assumes that there is a low dissociation of mo-
bile ions in the glass. If the number of mobile ions is low, then the mobility is inde-
pendent of N and the conductivity is directly proportional to the number of mobile
ions.

If we view the conducting glass as a solid solution in which the network, or
dopant salt, behaves as a weakly dissociated electrolyte, then it should follow the
dissociation equilibrium:

M2O À M+ +OM−, (3.4)

implying that the concentration of mobile ions, [M+] is given by

[M+] =
√

KaM2O , (3.5)

where K is the dissociation constant and aM2O is the thermodynamic activity of M2O.
Since only the dissociated M+ ions are mobile, the conductivity of a glass should
correlate to the activity, which it has been shown to do for different silica glasses(41).
The activation energy in this model thus has two contributions; an activation energy
of mobility (similar to that of the A-S model) and the energy required to dissociate
from the oxide (or salt).
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Figure 3.4: Schematic of the Anderson-Stuart model.

3.2.3 Dynamic Models

Dynamic Structure Model

The key features of the dynamic structure model (42; 43; 44) are:

1. The glass network is not completely frozen in, until far below Tg

2. The mobile ions create their own environment and thus shape the glass struc-
ture

3. The ionic conduction is a hopping process

Its idea is that structural relaxations are not only possible, but a major part in the
explanation of the observed conduction pathways in glasses. In a glass with mobile
ions of type A, these ions will predominately occupy A sites which are energetically
favorable sites for A ions in terms of coordination numbers and bond length. There
are other sites in the lattice, called C sites which are less energetically favorable for
A occupation, but the energy mismatch is not large enough to forbid A occupation.
Should an A ion hop from its site to a C site, the energy difference will make a
correlated backward jump likely, but if the ion resides in the site long enough for the
coordinating anions to relax, it can adapt the C site into an A site. Meanwhile, the A
site left behind is now in an energetically unfavorable state and will thus relax into a
low energy C site.
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3.3 Mixed Mobile Ion Effect

The nature of the model makes it highly suitable for Monte Carlo simulations,
where a simple square grid of C sites are populated by mobile ions. By assigning
a relaxation time for the C → A relaxation, and likewise the A → C relaxation and
let the ions hop randomly between the sites (with an energy dependent probability)
a network of path will form as a region of A sites are more frequently occupied
by A ions and hence less likely to relax to C sites. Furthermore, the model offers
explanation for the mechanism of a cooperative conduction process and a threshold
in the conductivity since a small number of mobile ions cannot uphold a continuous
pathway network.

The model was also early adopted for the mixed alkali effect by introduction of B
ions and the corresponding B sites. Monte carlo simulations managed to reproduce
both diffusion coefficients of both ionic types but also the ac conductivity.

However, despite its numerical success, the model can be called into question on
its bold statement that the ionic motion to any degree couples to the relaxation of the
glass matrix below the glass transition temperature, a question raised even by one
of its original authors (45). Angell (46) has pointed out that there is a decoupling
between ionic and structural relaxations at temperatures below Tg. The timescale of
the structural relaxation time at Tg, whereas the ionic relaxation time may be as fast
as 10−9 s. While the DSM may be applicable to glasses above Tg, its validity below
it should not be taken for granted.

Jump Relaxation Model

The jump relaxation model (JRM) by Funke (47; 48) approaches the hopping pro-
cess in glasses with a strain energy associated with the jump to a new site, akin to the
DSM model. A fundamental difference is the physical origin of the strain energy at
the new site, and the following relaxation. In JRM, the energy mismatch is assumed
to originate from the Coulomb field of the other mobile ions in the glass. This is a
fully reasonable hypothesis considering that in an equilibrated material with mobile
ions, the ions will be distributed as to minimize the potential energy of the system.
For Coulomb interactions, this will be the distribution that minimizes the fluctua-
tions in the electric field. If one of the ions jumps to a new site, a local disturbance
in the force is induced. Assuming a much shorter relaxation time for the ions than
the glass matrix, the distortion of the field can be normalized, either by a backward
jump of the ion, or a movement of the surrounding ions.

JRM was developed with the frequency-dependent conductivity in mind and do
provide a model that fit to experimental data while providing a microscopic expla-
nation for the behaviour.

3.3 Mixed Mobile Ion Effect

One of the puzzling problems in trying to construct a universal model for ion con-
duction is the Mixed Mobile Ion Effect (49; 50) (MMIE, also known as the Mixed
Alkali Effect). While there is no direct correlation between the composition and
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properties of oxide glasses, in many cases a given property will change in an ap-
proximately linear fashion as composition is varied between two end compositions,
A and B. To a first approximation the property G of an intermediate composition can
usually be taken to be

G = cAG(A)+ cBG(B), (3.6)

where cA and cB are the relative concentrations of A and B respectively. This is
however far from true in some mixed systems.

A good example of this is the strong non-linearity in ionic conductivity as Li2O
is exchanged for Rb2O in the metaphosphate glass system (Li2O)1−x− (Rb2O)x−
PO3. At room temperature, σdc drops a good 8 decades below that expected from
equation 3.6 at the intermediate x = 0.5 composition. In general, properties related to
the mobility of the metal ions in metal-oxide modified glasses, such as conductivity,
dielectric loss, Tg

†, thermal conductivity and viscosity (6; 52; 50), tend to show a
non-linear behavior. Meanwhile, other properties such as density, sound velocity and
optical properties vary slowly and approximately according to equation 3.6 (53; 50).
Although the discussion here will be restricted to MMIE in glassy systems, it has
been observed also in crystalline materials (e.g., (54; 55)). While a complete model
of the MMIE by necessity must be able to explain all of its aspects, we will here
focus our attention to the MMIE on dc-conductivity.

Several models have been proposed for the MMIE, but so far none have made
claim to explain all of the properties of MMIE. Early structural models speak, e.g.,
of phase separations between alkali rich and alkali poor glass regions, better chances
for differently sized ions to find low energy sites etc. More bond and coordination
centered theories instead point to ,e.g., differences in field strengths or mass dif-
ferences of ions (see review: (49)). These models have however not been able to
reproduce experimental data to any degree, or have had too many free parameters
to have any physical meaning. Any real advancement in the understanding of the
MMIE came first with the availability to computers and simulations on larger scale.

Today, a consensus have more or less been reached that there are preferential
diffusion path for different kinds of ions in a mixed glass. The more different the two
ions are in size and polarizability, the more different will their preferred coordination
environments, or sites, be. Molecular orbital computations have shown an energy
penalty for an ion to jump into an site adopted for another ion type (56). The idea
of an energy penalty for an ion to occupy an unlike site is also an integral part of the
dynamic structure model. The source of this penalty is however an open question.

The dynamic structure model has been applied to the MMIE problem with some
success. as described above. It has managed to reproduce the diffusion cross over
of the two mobile ions, and the conductivity drop, but as described above, its fun-
damental assumptions of a highly adaptive glass matrix at the timescale of ionic
movement may be overstated in glasses below Tg.

†It should be noted that in, at least, mixed alkali-phosphate systems, Tg experiences a minimum
at the mixed composition. A non-intuitive behavior considering that this is where the ionic mobility
is the lowest. (51), Paper IV and refs. therein
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MD simulations of mixed alkali silicates at 700 K by Habasaki and coworkers
(57; 58; 59) do not find site conversions to the extent required by the DSM. In-
stead, the existence of local structures, characteristic to each ion and a separation of
pathways with a stability of several hundreds of picoseconds are found, in line of
preferential diffusion pathways. The MMIE is proposed to be caused by a mutual
interception of the jump paths. These findings are in agreement with bond valence
calculations of LixRb1−xPO3 in which the ion types are found to block of each oth-
ers pathways. Additionally, the efficiency of the blocking is enhanced by the low
dimensionality of the pathways(60; 61).

As briefly mentioned above, the difference in mass was once thought to be one
of the factors that contributed to the MMIE. An investigation of a mixed 6Li/7Li
borate glass did show a pronounced effect(62) but the result was later refuted by
other groups (63; 54; 64). However, this may not be the end of the story. In paper V,
an investigation of the MMIE in the mixed AgxNa1−xPO3 system, which exhibit a
very low MMIE, we propose that the mass difference may play a role in this system.
The two ions share a large part of their pathways, and can thus participate in an
inter-specie cooperative hopping process (ISCH). The Ag and Na ions are similar
in preferred coordination environment, but differ in weight by a factor of four. The
mass difference is dramatically larger than in the 6Li/7Li system and may thus play
a part in the MMIE. Indirect support is given by a 2d simulation of Brownian motion
(65) with an ion mass ratio of 1/3. While the simulation is a simple microscopic flow
model, it does reproduce a compositional dependence of the diffusion in the system.

While the MMIE still is not understood fully, a better understanding of it have
been gained in the past 15 years. The existence of distinct pathways for different
ions is mostly agreed upon, and so is the idea of an energy penalty for a jump to an
unlike site. The question that is under debate is whether the suitable sites are frozen
in at the glass transition, or if they are created by the mobile ions themselves.
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CHAPTER 4

Experimental Probes

None of the structural knowledge of glasses we have today would be possible with-
out the wealth of experimental data we have at our disposal. The strength lies not
in any specific experimental technique, but in the varied and complementary struc-
tural information they can provide. Diffraction techniques (sect. 4.4) are useful
for information on the average atomic distribution on length scales of typically 1-
30 Å (although longer length scales are possible). Atom specific techniques such
as XAS (X-ray absorption spectroscopy) and NMR (nuclear magnetic resonance)
are the perfect complement as these provide detailed information on coordination
environments of specific atoms. Vibrational spectroscopy gives information on the
dynamics of specific groups (e.g., a P–O bond vibration) and changes in these vibra-
tions when e.g. composition or temperature is varied. Even macroscopic properties,
such as density, Tg et c., can provide us with clues on what is happening on an
atomic scale with a change in sample composition.

Here, we will discuss each of these experimental groups separately, focusing on
the diffractional techniques, and thermal analysis used in the attached papers.

4.1 Macroscopic Scale Probes

At the macroscopic scale we can measure properties such as mechanical strength,
density, thermal expansion and color. While these may not initially seem use-
ful for structural determinations, their dependence on microscopic properties (bond
strength and topography, impurities et c.) makes it possible to relate these properties
(albeit indirectly) to the microscopic structure. Of particular interest is to measure
differences when a small change of the sample is made, such as compositional, tem-
perature or means of production.

Measurements of thermal properties belongs to this group as well and can pro-
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vide valuable knowledge about changes in bonding due to compositional changes
(as discussed in the section 2.2.2) The most commonly used technique for thermal
analysis is today Differential scanning calorimetry.

4.1.1 Differential Scanning Calorimetry

For investigations of the thermal properties of glasses, differential scanning calorime-
try (DSC) is often used. In principle, DSC is rather simple. By heating a sample at a
constant rate of change in temperature and measuring the heat (in W) needed to do
so, any process that involve a change in thermal properties can be detected. A step-
wise change in the heat needed indicates a change in the heat capacity, Cp, which
is a measure of the internal degrees of freedom in the system. If the heat instead
is changed only over a short temperature interval, we either have an endothermal
(increased heat) or an exothermal (decreased heat) process in the sample.

Practically, the measurement of a sample is performed in a sample holder, (pan),
and thus the required heat is usually expressed as the difference in heat flow to the
sample and pan as compared to a reference (usually an empty pan). Current instru-
mentation, such as the Q1000 DSC from TA Instruments we have used, are not only
capable of heating, but also cooling samples and perform multiple heating/cooling
cycles to investigate any hysteresis behavior of the sample (due to chemical reac-
tions, crystallization of glasses etc). In addition new DSC techniques such as tem-
perature modulated DSC can improve the resolution of the thermal processes.

Figure 4.1 shows a schematic DSC curve for a glass-containing sample during a
heating cycle. As pointed out in the earlier discussion on the glass transition (section
2.1) it is characterized by a rapid change of Cp and is seen as a step in the curve. At
Tc, a crystallization, which is an exothermal process, gives a peak in the curve while
the endothermal melting at Tm gives a corresponding dip of the curve.

Quantitative information can be extracted from these curves. E.g., an integration
over a melt peak yields the total energy required for the phase transition i.e. the
latent heat associated with the transition.

4.2 Vibrational Spectroscopy

Molecular vibrations present in a sample can give valuable information of its struc-
ture. Many vibrational modes yield strong signals and are relatively sensitive to the
exact structure and can generally be identified. One such mode is the -O-H vibration
which for our purposes can be used to detect, e.g., the extent of depolymerization
by water of a phosphate glass, and thereby gain knowledge of its integrity. Two
vibrational spectroscopy techniques are commonly used; Infrared (IR) and Raman.

Although infrared and Raman spectroscopy are two different techniques con-
cerning the way radiation interacts with the sample, they are usually mentioned to-
gether since both of them are used to study the vibrational spectrum, and due to their
different physical origin, they are complementary to each other.
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Figure 4.1: Schematic DSC curve showing typical responses to; glass transition, crystalliza-
tion and melting, during a heating cycle.

In infrared spectroscopy, a broad spectrum of infrared light passes through a sam-
ple and an absorption spectrum is obtained by comparing the signal after the sample
to a reference signal. In the infrared region, light is absorbed by the molecules by a
change of their vibrational states. However, not all state transitions can be induced
by an absorption. For a vibrational transition to be IR-allowed, the change in vibra-
tional state must also give a change in the dipole moment of the molecule. Example
of allowed IR transitions are the asymmetric stretching modes in a coordination
tetrahedra, or the O-H vibration in a hydroxyl group.

Raman spectroscopy, on the other hand, is a process where the molecules scat-
ter incident monochromatic light, usually in the visible region of the spectrum. In
Rayleigh scattering, the molecule is excited by the incident light and immediately re-
laxes down to its original state. If, however, the molecule does not relax to the state
it came from, we have inelastic stokes or anti-stokes scattering, where the energy
difference corresponds to a Raman allowed transition with a change in the polariz-
ability of the molecule. This gives that Raman shows strong peaks for non-polar
functional groups and thereby complements IR data.

Raman and IR usually share common absorption bands, but complementing
measurements with both techniques give more information on the vibrations in the
material. A fundamental difference is however, that IR uses transmission and the
sample must therefore be more or less transparent, whereas Raman can be done by
studying the scattering from a surface.

Both Raman and IR can be used to study the vibrations in amorphous materials.
Structural information, such as the location of a metal ion in a modified glass can
be seen by, e.g., a shift in a vibration (compared to the undoped glass) of a group,
coordinated to the ion.

29



4 Experimental Probes

4.3 Atom Specific Probes

Apart from the neutron and X-ray diffraction methods, there are a wide range of dif-
ferent structural probes that can give important pieces of the puzzle. Where neutron
and X-ray diffraction typically fall short is on the short range order of amorphous
materials exhibiting several different interatomic correlations on a similar length
scale. Element specific probes such as XAS and NMR can give wealth of informa-
tion on coordination numbers an bond length to complement the diffraction methods
above.

XAS (X-ray absorption spectroscopy) and the closely related EXAFS and NEX-
AFS ((near-edge) extended X-ray fine structure) all probe the anomalous scattering
near an X-ray absorption edge of the element of interest, where the absorption is
slightly different depending on the environment of the atom. In pre-edge XAS, the
studied electrons are excited at slightly lower energies than the absorption edge of
the isolated atom due to changes in the electron structure caused by its neighbors.
The technique is predominately useful for transition metals where ligands affect the
energy splitting of d- and f-orbital electrons. Post edge x-ray absorption (EXAFS,
NEXAFS) is caused by a back scattering of photo-electrons and results in a oscil-
lating behavior at energies above the absorption edge. These techniques provide
information on the closest environment in terms of number of neighbors and dis-
tances to atoms in the first and second coordination shell.

NMR (nuclear magnetic resonance) utilizes the magnetic spin of the atomic nu-
cleus. A nucleus of, e.g., 13C has two spin states, up and down, which normally are
degenerate. Under a magnetic field however, the two states will split with an energy
∆E thereby causing the lower energy state to have a higher population. An electro-
magnetic wave with en energy ∆E can thus excite a nucleus in the low energy state
and the population relaxation can be measured. The energy shift is dampened by
the magnetic shielding the electrons around the nucleus provide. If the probed atom
is in a solid, the electron cloud, and hence the shielding, is distorted by any coor-
dinating atoms whereby the resonance frequency shifts slightly (so called chemical
shift). Information on structure can thus be obtained by assigning absorption peaks
to different kinds and number of ligands.

4.4 Diffraction Techniques

X-ray and neutron diffraction have become important standard tools in the investi-
gation of the structure of amorphous and complex materials. These let us investi-
gate the atomic distribution within glasses and together with computational structure
modeling, e.g., reverse Monte Carlo (see sect. 5.1.3) we can build detailed structural
glass models. While both diffraction techniques essentially work on the same prin-
ciples the two are often complementary to each other as the interaction between
neutrons and the sample is slightly different from that of x-rays.

X-rays are scattered against the electrons surrounding the atoms and thus the
form factor is roughly proportional to the atomic number. This mean that corre-
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lations between heavy elements, such as silver and iodine, dominate the scattered
intensity. Neutrons are however scattered against the atomic nucleus and the scat-
tering length depends strongly on the exact energy levels of the core. The scattering
lengths thus vary in an erratic way along not only the elements but also with the
isotopes. In the case of AgI doped borate glasses, the neutron diffraction experiment
shows mainly correlations involving borons and oxygens, whereas the natural iso-
topes of both silver and iodine contribute very little to the total scattering. The X-ray
diffraction data are however dominated by the heavier atoms.

A third diffraction technique, which will not be covered in any detail, is electron
diffraction. Electrons are easily absorbed by most substances and electron diffrac-
tion in a reflection geometry can thus provide information from the very top layers
of the sample. Additionally, an electron beam can be focused to a much smaller spot
than either X-rays or neutrons and is thus a highly local probe of the structure. It does
however come with some strong limitations. Any experiment must be conducted in
vacuum to minimize unwanted interactions with the environment, a requirement that
is unsuitable for, e.g., volatile liquids. Furthermore, non-conducting materials will
quickly be locally charged, leading to an interaction of incident electrons not only
with the atoms themselves, but also by the Coulomb-field from the local electrostatic
charge.

For a more in depth review of diffraction techniques, see e.g. (6; 66; 67).

4.4.1 Neutron Diffraction

Neutrons are uncharged particles and their interaction with an atom is largely an
interaction with the nucleus. Neutrons do however carry a magnetic spin, something
that is sometimes used to probe the magnetic structure in a sample, but this will not
be covered here.

A neutron, incident on the sample is characterized by its momentum, k0. If an
interaction between the sample and the neutron occurs (as displayed in figure 4.2),
it can be described in terms of its momentum, Q, and energy transfer, ~ω, which are
defined by

Q = k0−k1 (4.1a)

~ω =
~2

2m

(
k2

0−k2
1
)

= E0−E1. (4.1b)

If a sample of N atoms placed in a neutron beam of density current j0 has j events per
second, then the scattering cross-section of each atom (assuming single component
sample), σ is

σ =
j

j0N
. (4.2)

The dimension of σ is area and represent the effective area, perpendicular to the
neutron beam, that a neutron must hit in order for an interaction to happen. This can
either be in the form of an absorption or a scattering event, and we can write the total
cross section as a sum of the two: σ = σs +σabs
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Figure 4.2: Elastic scattering process where k0 is the incident particle, k1 is the scattered
and Q is the momentum transfer

The scattering cross-section is in turn related to the quantity b, called the scat-
tering length.

σs = 4π〈b2〉. (4.3)

The scattering length is dependent on, not only the element, but also the isotope since
its interaction with the nucleus is related to the occupation of its energy levels. The
variation does, however, not follow any clear trend and b varies erratically with the
isotopes, even taking on negative numbers. This is an important feature of neutron
diffraction. If a neutron diffraction experiment is conducted on two samples of a
pure borate glass, one containing only 10B and the other only 11B, equation 4.2
states that when we change isotope, and hence the scattering length, there will be a
difference in S(Q). The two samples will be nearly identical in their structure, since
the bonds are determined by their chemical properties so any measured difference in
S(Q) is related to the boron correlations alone.

By defining the two averages 〈b2〉 = 1/N(∑i b2
i ) and 〈b〉2 = 1/N2(∑i bi)2 were

the sums are over all isotopes of a particular element, we may rewrite σs, which can
be separated into a coherent and an incoherent part as

σs = 4π〈b〉2 +4π
(〈b2〉−〈b〉2) (4.4)

The rightmost term in this expression is the so called incoherent scattering cross-
section σinc, and contains correlations between a single nucleus at the time t = 0 and
some later time. Note that the incoherent scattering is zero if only one isotope is
present in the sample. The left term σcoh = 4π〈b〉2 is the coherent scattering cross
section which contains correlation between an atom at t = 0 and itself at a later time,
but also correlations to all other atoms at t = 0 and later.

In a neutron scattering experiment, we measure the double differential scattering
cross-section which is the probability that an incident neutron will scatter into the
solid unit element dΩ in the solid angle Ω while having an energy in the range
[~ω,~ω+~dω] and can be written as

d2σ
dΩdE

=
1
~

(
d2σcoh

dΩdE
+

d2σinc

dΩdE

)
(4.5)
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where

d2σcoh

dΩdE
=

k1

2πk0
〈b〉2

∫ ∞

−∞
e−iωt

N

∑
m,n=1

〈 e−iQrn(0)eiQrm(0)〉T dt

=
k1

2πk0
〈b〉2

∫ ∞

−∞
e−iωtScoh(Q, t)dt

=
k1

2πk0
〈b〉2Scoh(Q,ω)

(4.6)

The corresponding expansion for the incoherent part is calculated similarly but
with the substitution 〈b2〉 → 〈b2〉−〈b〉2

The inelastic incoherent scattering contains dynamical information about the ma-
terial, but in the static approximation, an integration over all frequencies it will only
add a constant background.

The coherent structure factor is related to the real-space van Hove correlation
function G(r, t) through the double transform

Scoh(Q,ω) =
1

2π~

∫
G(r, t)ei(Qr−ωt)drdt (4.7)

where G(r, t) describes the correlation of particles at (r, t = 0) to the particles at (r′,
t = t ′). It can be written as

G(r, t) =
1
N ∑

i j

∫
〈δ(

r′−Ri(0)
)

δ
(
r′+R j(0)

)〉dr′ (4.8)

where R j is the position of particle j and the average is taken over temperature. The
van Hove correlation function can be divided in to parts; a self correlation, which is
the correlation of a single particles time evolution and the pair correlation (or distinct
correlation).

An integration over all frequencies in equation 4.7 yields the static G(r, t = 0),
i.e. the average particle correlation and is related to the static structure factor by

S(Q) = 1+
4πρ0

Q

∫ ∞

−0
(G(r,0)−1)sin(Qr)r(d)r. (4.9)

4.4.2 X-ray Diffraction

In X-ray diffraction, the X-rays interact with the electron cloud surrounding the
atoms in the sample. Since the electrons are distributed over a volume whose length
scale is similar to that of the incoming radiation, this case can not be considered scat-
tering against a point particle as for neutrons. Scattering contributions from different
parts of the electron cloud will interfere with each other and the scattering strength,
or form factor, f , as it is called in X-ray scattering, shows a strong dependence on
the scattering vector k (Q in figure 4.2), with a monotone decrease with increasing
|k|. The scattering strength of atoms increases with increasing number of electrons
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and thus for a multi component system, the scattered intensity is weighted towards
correlations involving heavy atoms.

Furthermore, for a multi component system the transformation from reciprocal to
real space correlation functions (the inverse transform of equation ??) is not possible
to calculate exactly from the X-ray structure factor F(k) due to the strong angular
dependency of the form factor and its variation among atoms. Since the form factor
decreases with increasing values of k, it may be difficult to obtain high k-range data
from X-ray diffraction due to a low signal-to-noise ratio at high scattering angles.
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CHAPTER 5

Structural Modeling and the Bond Valence Method

5.1 Modeling Amorphous Materials

Computers have allowed us far more refined ways of creating structural and dy-
namic models of complex materials than what could have been achieved otherwise.
Molecular dynamics provide not only structures but also the dynamics of the sys-
tem, and allows a detailed study of the movement of individual atoms. Monte Carlo
methods creates static structural models but at far less computational costs. These
methods are commonly used for large structural models (containing thousands of
atoms) while other methods, such as molecular orbital or ab initio typically focuses
on providing detailed information on processes through quantum mechanical com-
putations. There is always a constant development and sometimes merger of these
techniques. E.g., in later years, ab-initio MD have risen due to the ever increasing
computational power available in research.

Here, we will look closer at three of these modeling techniques.

5.1.1 Molecular Dynamics

The perhaps most natural method of computer simulations of a material is the Molec-
ular Dynamics simulation (MD) (Alder, ’57; Alder, ’59; Alder, ’60). Since the
systems we are interested in simulating here are composed of atoms which have rel-
atively large masses and low velocities, their motion can be treated classically. The
time evolution can then be calculated by Newtonian physics where the motion of
each atom is governed by

mir̈i =−∂Upot

∂ri
= fi (5.1)

, where mi is the mass of particle i, ri its position, ∂Upot is the potential energy and
fi is the force acting on the particle. In the most general case the potential landscape
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∂Upot in which the atom moves depends on the location of all N−1 other atoms in
the system (neglecting possible force fields outside the system). To determine the
time evolution of the system, we must solve the system of the N coupled differen-
tial equation in eq. 5.1. Molecular dynamics is simply put a numerical integration
of this equation system. Commonly the Verlet algorithm (Verlet, ’67) is used in
implementations due to its stability.

In order to simulate the full movement of atoms, each time step in the integration
must be significantly shorter than the period of any atomic (vibrational) movement,
and thus for most systems the time steps are of the order of 10−15 s. This short time
step makes simulations of any larger system or during a longer simulation times (> 1
ns) computationally expensive.

As with any computer simulation method, we must choose a start configuration
of the material we are simulating, and make sure that this choice will not affect
the final result. In crystalline materials the atoms may be placed according to the
ideal crystalline structure and given a random Maxwell distribution of velocities
according to a target temperature, but for glasses this is not possible as we do not
know the structure beforehand. Instead, the glass structure model is built in the same
way as real glasses are, i.e. by starting with a melt at an elevated temperature (a few
103 K), where the atoms are allowed to mix during an equilibration period, and then
quenching the melt into a glass. This change of temperature during the quench is of
the order of 1012 K/s, a far more rapid quenching than what normally is achievable
(109 K/s during sputtering), and thus an MD glass model may be expected to have a
higher residual entropy than a real glass.

Once a configuration that does not explicitly depend on the start configuration
has been reached, the model and its time evolution may be used to obtain informa-
tion on the system. Early applications involved computing various thermodynamical
quantities by averaging the observable quantities over the system trajectory and ap-
ply the ergodicity hypothesis, which states that the time average of a quantity of a
system is equivalent to its average over a statistical ensemble. However, since the
MD simulation contains detailed information on the movements of each atom, much
more data may be extracted. Relevant for this work is the studies of diffusion and
conduction processes in glassy materials, where MD can contribute with information
not available elsewhere. For instance, Jund et al. (68) have studied the paths taken
by the mobile ions of a glass and could thereby create pathways for ionic diffusion
and the details of ionic jump processes. More detailed studies of the equilibrium
sites between which the ions jump have been performed by Vogel (69) and Lammert
(70) among others.

The MD method is however not whithout problems. The simulated system is,
as is the case for most computer simulations, of a finite size (typically a few thou-
sand atoms, although models with up to 106 atoms have been simulated (71)), and
thus boundary effects may be of importance for the results. For simulations of bulk
systems, this is usually solved by implementing periodic boundary conditions, i.e.
the simulation box is surrounded by 26 identical boxes. This reduces the problem,
but effects of the limited size may still arise and must be taken into consideration.
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Numerical inaccuracies may also cause some problems in the calculations and, if
not accounted for, may cause a drift in temperature even for adiabatic systems.

However, the largest problem to obtain good MD models lies in the choice of
realistic interaction potentials. Simple liquids can be simulated with reasonable re-
sults by hard sphere, or two–particle Leonard–Jones potentials (72), but for complex
solids like ion conducting glasses these do not suffice. Commonly, potentials used
for glass simulations are extracted as two–particle potentials from binary crystals
containing the atoms of interest, and asserted to be the same in the glassy structure
(13). There are also models where the interaction potential is computed by quantum
mechanical (QM) methods, such as ab-initio MD (73), where density functional the-
ory (DFT) is used for the electronic degrees of freedom. QM methods are however
several orders of magnitude slower than classical approximations, and thus cannot
be used for large systems under long simulation times.

5.1.2 Metropolis Monte Carlo

A reoccurring problem in condensed matter physics is to compute various thermo-
dynamical quantities. To compute the equilibrium value of a observable V we need
to solve the multi dimensional integral over position, p, and momentum, q:

V =
∫

d3N
p d3N

q V (p,q)e−E/kBT

∫
d3N

p d3N
q e−E/kBT

, (5.2)

i.e., we need to integrate over all configurations that are consistent with the con-
straints applied to it. Here the integration over momentum space can be carried out
separately. These integrals are impossible to solve for anything but the most simple
systems and approximative methods must therefore be used. The ordinary Monte
Carlo algorithm is an approach to solve these problems by random sampling of the
integrand. In this case we would thus generate a set of random configurations and
calculating the approximate value V of eq. 5.2 as

V ≈ V = ∑i Vie−Ei/kBT

∑i e−Ei/kBT
(5.3)

While this method of integration can produce good estimations if the integrand
varies slowly over its domain, this is not the case here since the energy landscape of
the configuration space of densely packed matter usually have few very sharp min-
ima dispersed in a large 3N dimensional space of high energy states. Most randomly
picked configurations will thus be high energy states of very low probability, and
finding the probable low energy states by chance is a numerical search search for
the notorious needle in the haystack. To make sure that some low energy states are
included in the sum of eq. 5.3 and a very large set of samples is required for an
acceptable approximation.

The Metropolis Monte Carlo algorithm (MMC) (74) offers a solution to this
problem. Rather than randomly sampling configurations and weighing each by its
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Figure 5.1: Flowchart describing the Metropolis Monte Carlo method
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probability, it samples configurations with a probability of exp(−E/kBT ) and then
calculate V as the mean value of V in these configurations. The algorithm to find
configurations of exp(−E/kBT ) probability is outlined in fig. 5.1 and the steps are
further described here. If we start at some configuration labeled n, we create a trial
configuration by moving one particle, located at ri, in a random direction;

rtrial = ri +aζ, (5.4)

where aζ is a random vector such that |aζ| ≤ a, and calculate the change in energy
of the system ∆E = Etrial − E0. If ∆E ≤ 0, the move is accepted and if not, it
is accepted with the probability exp(−∆E/kBT ). If the move is not accepted, the
system is returned to its previous state. We label this new state (also a rejected move
results in a ’new’ state) as n + 1 and continue to move another particle randomly.
After M steps we have generated a so called Markov chain of M configurations,
distributed according to the Boltzmann distribution. Given enough iterations we can
(as all moves, and thereby configurations, have a finite probability) move through
the entire configuration space. From this set of M states the MMC approximation of
observable V is the sum over all M selected states:

V ≈ V =
1
M

M

∑
i=1

Vi, (5.5a)

and

lim
M→∞

(
V −V

)
= 0. (5.5b)

As in molecular dynamics, the start configuration is rarely a low energy state
and may thus skew the Boltzmann distribution, so before we start collecting con-
figurations the system should be allowed to equilibrate properly during a number of
iterations until the memory of its start position has been lost.

MMC is less computationally expensive than an MD simulation of the same
system, but will on the other hand only generate static structural information. It also
shares some of the problems of MD, such as the same problem of finding realistic
interaction potentials. The potentials used are obtained in a way similar to those of
MD simulations, and as in MD, developments of QM incorporations to calculate the
electronic interactions have been made.

5.1.3 Reverse Monte Carlo

For both MD and MMC simulations there is only one way to tell if the chosen poten-
tials are good enough approximations of the true interactions, and that is to compare
calculated observables, such as nearest neighbor distances and pair correlation func-
tions, with the corresponding experimental data. If the computed and experimental
quantities do not agree, new interaction potentials must be chosen and the calcula-
tions redone. An alternative route towards a construction of a structure model would
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be to directly produce a model that agrees with experimental data, which is exactly
what the reverse Monte Carlo (RMC) method does.

The RMC algorithm (75; 76; 77) is a variation of the MMC algorithm, whith
the difference that the energy of the system has been replaced by a parameter χ
that describes the difference between experimental values and the corresponding
quantities calculated from the structure model. For x-ray or neutron diffraction data,
the parameter χ2

n for the nth model takes the form

χ2
n =

m

∑
i=1

(
SC

n (Qi)−SE(Qi)
)2

σ2
i (Qi)

, (5.6)

where SC
n (Qi) and SE(Qi) are the computed and experimental structure factors at

wave vector Qi (at m discrete points) and σ2
i (Qi) relates to the experimental errors

at that wave vector. The algorithm is outlined in figure 5.2 and is, as can bee seen,
similar to the MMC algorithm.

Starting from some initial configuration (n=0), the total structure factor and χ2
n

are calculated. One particle is moved at random as in the MMC, eq. 5.4, and χ2
trial is

calculated for the new configuration. If χ2
n−χ2

trial ≥ 0 the move is accepted and else
it is accepted with the probability exp

(−(
χ2

n−χ2
trial

)
/2

)
. The new configuration

is labeled n+1 and a new iteration begins (now comparing the trial configuration to
configuration n+1).

Comparing this to the MMC method we see that the driving force of RMC is χ2

where MMC uses energy, and that the experimental errors in RMC correspond to the
temperature in MMC. This comparison is correct on an analysis of the algorithm, but
physically this similarity is not important. The exact form of χ2 is chosen simply
because it works. The important part of RMC is the possibility for a move to be
accepted despite that it increases the deviation from the experimental data. This
ensures that the entire configurational space may (just as in MMC) be investigated,
given that a large enough number of moves are made.

A key feature of RMC is the ability to obtain a configuration that is in quantita-
tive agreement with several sets of data. The only requirement is that the correspond-
ing quantity can be calculated from the static structural model that RMC produces.
Given a set of experimental data on the form DE

j (X j,i) which allow a computation of
a corresponding χ2

j,n, the total deviation χ2
n may be calculated as

χ2
n =

N

∑
j=1

χ2
j,n (5.7)

Thus, one may use several data sets that do not need to be defined on the same
domain, or even dimension (e.g. simultaneously fitting both structure factors (di-
mension Å−1) and real space correlations (Å)).

In addition to minimize the deviation to diffraction data, several types of con-
straints on the structure, based on other experimental techniques or chemical knowl-
edge, may be incorporated into the RMC model. The most common constraint is
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Figure 5.2: Flow chart of the reverse Monte Carlo algorithm.
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the minimum nearest neighbor distance, realized by rejecting moves that places any
two atoms too close to each other. In materials with well defined SRO, such as the
network glasses described earlier or molecular liquids, the knowledge of coordina-
tion numbers from e.g. EXAFS or NMR measurements may be included. If we
define the proportion of atoms in the modeled structure of type a that has a given
coordination to atoms of type b as f RMC

ab and the required proportion as f req
ab then

χ2
n = ∑

a,b
χ2

ab,n = ∑
a,b

(
f RMC
ab − f req

ab

)2

σ2
ab

. (5.8)

σ2
ab here acts as the weight of the a− b coordination constraint compared to other

experimental χ2. Bond valence constraints can likewise be included in the modeling
to further improve the local bond lengths. Throughout our RMC calculations, we
have included BV constraints by adding the term

χ2
BV,n = ∑

i

∆V 2
i

σ2
BV,i

, (5.9)

where ∆Vi is the bond valence missmatch of ion i (see section 5.2 for details on the
BV method). Other forms of BV constraints exist, see e.g., the implementation in
RMCPow (78; 79).

The main advantage of RMC is, as has already been mentioned, that it will pro-
duce a model of the structure that is consistent with experimental data (provided
that they do not contain any systematic errors) without the need for any interaction
potential. It is also computationally efficient since the calculation time for each step
is of the order N, the number of atoms in the model, whereas MD simulations are
of the order N2. RMC can thus produce larger models using less computing re-
sources. The lack of potentials in RMC will however mean that the structure model
produced is not necessarily minimized with respect to energy and as in MMC, there
is no dynamical information in the model. Furthermore, since potentials often are
transferable between different systems, MD and MMC allow modeling of entirely
new materials, whereas RMC requires that a real sample has been produced and the
relevant measurements have been performed.

The RMC method is under constant improvement and new implementations for
special applications as well as novel uses of RMC has been developed. On the
software side there is the original RMC program: RMCA , currently in version 3.14.
It has two direct extensions in RMCPOW (78; 79) and RMCProfile (80), both geared
towards structural determinations of crystalline materials, although they should be
able to handle amorphous materials as well. RMC++ (81) is a rewrite of the original
RMCA in C++ and is, like its predecessor, written primarily for amorphous material
modeling. All these can be found through the ISIS RMC page (82).

The RMC algorithm has also been developed to include dynamics data, such as
the dynamic structure factor, S(Q,ω) from inelastic or quasi elastic neutron diffrac-
tion scattering or IR vibrational spectroscopy. The RMCt (83) algorithm works with
a set of structure models where each model represents a single time step. Each of
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these time steps should fit well to the static part of the experimental data (and con-
straint) as in the ordinary RMC method, but the ensemble as such should additionally
fit the dynamics data. At this time a satisfactory reproduction of quasi-experimental
data, calculated from MD simulations, have been reported (83).

5.2 The Bond Valence Method

In 1929 L. Pauling published five rules for the structure of inorganic compounds,
particularly crystalline systems (84). The second of these rules was;

In a stable coördination structure the electric charge of each
anion tends to compensate the strength of the electrostatic
valence bonds reaching to it from the cations at the centers
of the polyhedra of which it forms a corner; that is, for each
anion

ζ = ∑
i

zi

vi
= ∑

i
si.

ζ, zi and vi are defined such that, if e is the electronic charge then; −eζ is the
charge of the anion, ezi is the charge of cation i, vi its coordination number and
si is the strength of the electrostatic valence bond going from the cation to each
of the surrounding anions. In short, this rule tells us that the electric charge of an
anion in a stable compound should be locally balanced by the positive charge of
the surrounding cations to which it is coordinated.The strength of the bond is here
defined only as the electronic charge of the anion divided by its coordination number.

Donnay and Allman (85) generalized the Pauling rule to include the relation
between the length of a bond and its strength by expressing the valence as ζ =
∑i s(R)i. To avoid confusion this new expression was renamed bond valence (BV).
Various forms for the bond valence exist but the most commonly used form is the
exponential form suggested by Brown and Altermatt (86)

SM−X = e
R−R0

b , (5.10)

where R0 and b are bond valence parameters. R0 is the unit valence distance and
is related, but not equal to the ideal bond length. b on the other hand is related to
the softness of the bond, which will be discussed later. The total valence of an ion
M is then the sum of individual bond valence contributions from each ligand it is
coordinated to:

VM = ∑
X

SM−X . (5.11)

This expression can easily be extended to include more than one type of ligand atoms
by summation over all types

VM = ∑
i

∑
Xi

SM−Xi = ∑
i

∑
Xi

e
RXi

−R0,i
bi , (5.12)
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where Xi is ligand atoms of type i.
In a stable coordination environment, VM should be close to the formal charge

(the oxidation state) of M. The bond valence parameters R0 and b can then be cal-
culated from sets of refined crystalline structures containing M−X coordinations
where the two parameters are optimized such that the bond valence sum of each
atom is as close to the ideal valence as possible. Commonly, only the nearest neigh-
bors (i.e. ions in the first coordination shell) are considered to contribute to the bond
valence sum. However, due to the limited range of bond lengths and varying coor-
dination environments in crystalline structures, an independent refinement of both
R0 and b is difficult to to achieve for many atom pairs, and thus a universal value of
b = 0.37 is commonly used (86). With a refined value for R0, most atoms in their
equilibrium position in a crystalline structure have a valence deviation from their
ideal value (a bond valence mismatch ∆V = |V −Videal|) of less than 0.05 valence
units (v.u.). This rather narrow expected mismatch of crystalline equilibrium sites
is used as a standard tool in crystallography to evaluate the plausibility of proposed
crystalline structures. A calculation of the root mean square of ∆VO for all atoms
yields the global instability index, which at high values (> 0.2 v.u.) indicates proba-
ble instability of the structure and can therefore be considered unlikely (87; 88; 89).

BV is also a valuable tool for locating light elements such as H and Li in struc-
tures derived from X-ray diffraction data. The original proposal of the Donnay and
Allman paper was indeed to use bond valence as a tool to distinguish O−2, OH−1

and H2O from each other in crystalline structures. If the total valence contribution to
an oxygen from the known (i.e. not hydrogens) cations in the structure is calculated,
the mismatch of its total valence can only be reduced by the presence of hydrogen
atoms. In this way, the valence mismatch indicates how many hydrogens it must
bind to, for its valence to be close to the ideal 2 v.u.

A more general method for localization of equilibrium positions of atoms in a
proposed structure was presented by Waltersson (90) where he shows that the Li
positions in a range of crystals can be accurately predicted by calculating the total
valence of a hypothetical Li placed at several position in the unit cell, thereby creat-
ing a 3d map of the valence landscape. Asserting that the most probable equilibrium
sites are those where ∆V ≈ 0 he could then identify the same Li sites as those found
by experimental techniques. Similar use of BV calculations are used to locate ions
in protein structures (91).

The traditional bond valence approach of including only the first coordination
shell is usually sufficient if one is interested in the valence of an ion in a highly sym-
metrical coordination polyhedron, but in distorted structures this first coordination
shell can be difficult to define or may even be a meaningless concept. By instead
performing the sum in equation 5.12 over all atoms within a cut-off radius, Rco,
which covers more than the first coordination shell, this problem may be avoided.
Furthermore, using a larger radius will include more atomic distances in parame-
ter refinement and thus make an independent refinement of both R0 and b possible.
Brown and Altermatt (86) chose Rcut−o f f = 2.67Å but a later study by Adams (92)
revealed the importance of considering how the choice of Rcut−o f f affected the least
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square fit of R0 and b. For most ion pairs, the cut-off distance in the soft-BV pa-
rameter set of Adams lies between 5 and 8 Å. Increasing the distance over which
surrounding ions may contribute to the valence of a central ion also means that BV-
maps now takes the form of a smooth function, resembling an energy landscape,
rather than the discontinuous nature it takes if Rcut−o f f is too short.

Despite the increased cut-off radius, the lack of sufficiently many reliable crys-
talline structures still pose a problem in finding proper values of b for many of the
less common atomic pairs. While this pose little problem in the refinement of crys-
talline structures, a proper b value is important in modeling the different bond soft-
ness between different ionic pairs when, e.g., disordered systems are studied. Ad-
ditionally, treating b as a strictly empirical parameter also prevents any meaningful
theoretical treatment of the BV method. Urusov (93) have argued that the softness
of the bond should increase with the sum of the softness of the interacting parti-
cles. This, however, contradicts the empirical HSAB (hard and soft acids and bases)
concept (94) according to which instead suggest that reactions occur most readily
between species of similar softness or hardness. Thus, Adams found that there is a
relation between the difference in softness (sanion−scation) and the value of b refined
from crystalline structures. This relation not only allows an estimation of b when no
crystalline data are available, but also leads to a further refinement of the structure
fitted b–parameters(92; 95).

5.2.1 Bond Valence and Ionic Conductivity

Garret et al. introduced the idea that possible diffusion pathways of mobile ions
could be determined as those regions where the valence mismatch is as low as possi-
ble. They further demonstrated the plausibility by showing the striking resemblance
between the isosurfaces of V−γ

Ag ,(γ > 0), and a neutron diffraction difference map,
showing the Ag density in a α-AgI unit cell. A 3d representation of these BV-
pathways is shown in fig. 5.3 and shows a strong similarity to the Ag densities
calculated by first-principles MD (34). A direct comparison of Ag pathways in the
superionic RbAg4I5 determined experimentally and by bond valence calculation is
shown in figure 5.4

The work of Adams (92), mentioned in the previous section, did not only in-
vestigate how Rcut−o f f should be chosen, but looked into all aspects of how the
bond valence parameters need to be defined in highly asymmetrical positions, such
as those common in amorphous materials. The extension of the cut-of radii meant
that the refinement of R0 and b now could be done over far more M–X pairs in the
crystalline structures, thereby allowing a refinement of both parameters.

A calculation of the bond valence pathways do not only yield a description of
their diffusion, but can also be used to determine the activation energy of diffusion.
If the BV landscape is related to the energy landscape, there should be a relation
between the lowest BV mismatch for which a percolating pathway is formed and
the activation energy, if Ea is determined by energy bottlenecks that the ion must be
able to pass. In crystalline solids, this relation has been found to exist for a set of
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Figure 5.3: Pathways of Ag conduction in the crystalline α-AgI. Iodine ions arranged in a
body centered cubic lattice (not shown) are located in the corners of the unit cell and in its
center, while Ag can move in the BV region. From (96)

Ag-conducting vanadium oxide, tungstate and phosphate crystals (97). Application
to glass systems, modeled by RMC, soon followed in which Adams and Swenson
showed that the BV method is applicable to highly disordered systems as well (98;
99; 100).

Calculation of BV Landscape and Pathways

The calculation of the bond valence landscape used in our investigations are similar
to the approach by Waltersson and later Garret, and is here presented in some detail.

The bond valence landscape in an RMC produced structural model is calculated
by dividing the model volume into ca 4 million cubic sub-volumes, wherein the
total bond valence of a hypothetical mobile ion in its center is calculated. Volume
elements whose valence mismatch, ∆V is less than a chosen maximum mismatch
∆Vmax, and are not within the nearest neighbor distance of any immobile ions, are
said to be accessible for the mobile ion. A set of accessible volume elements that are
edge or face sharing are said to belong to a cluster, within which a mobile ion can
move. A cluster that form an infinite, percolating cluster through the periodic model
volume is thus a pathway for dc conductivity. A finite cluster on the other hand
can not participate in dc conduction, but may very well take part in ac conductivity,
provided that the frequency is high enough∗ that the ions in average travel a shorter
distance than the size of the cluster. The percolating cluster is here denoted P , and
the fractional volume it occupies in the model is denoted as F (P )

∗High in relation to the electric field, mobile ion mass, etc.
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5.2 The Bond Valence Method

Figure 5.4: Comparison of experimentally determined Ag density in RbAg4I5 (left) and the
pathways predicted from the bond valence method (96)

Ionic Conductivity in Glasses

The BV pathways can provide plenty of information on the ionic conduction pro-
cess in a glass. While an estimation of Ea in principle should be possible to do by
determining the lowest ∆Vmax for which a percolating cluster forms as in crystalline
structures, but it has proven difficult to determine this valence mismatch value in
amorphous material with a sufficient confidence. Instead a relation between the frac-
tional volume and both activation energy and dc conductivity (95; 101) according
to

log(σT
√

(m)) = A+B 3
√

F (5.13a)

− Ea

kbT
= A′+B′ 3

√
F (5.13b)

F is here calculated for the arbitrary value of ∆Vmax = 0.2v.u. While this choice
may seem critical, it has been shown that there is no large variation in the results of
equations 5.13 between different glasses, nor mobile ions, as long as ∆Vmax is kept
reasonably low, commonly 0.1-0.3 v.u.
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CHAPTER 6

Summary of Appended Papers

Paper I
THE NATURE OF CONDUCTION PATHWAYS IN MIXED ALKALI PHOSPHATE GLASSES

Li4xRb1−xPO3 glasses show a strong mixed alkali effect at room temperature.
At an intermediate composition (x = 0.5) the conductivity is 7 orders of magnitude
below that of either of the pure glasses. In this paper we investigate the nature
of the conduction pathways in these glasses by means of bond-valence analysis,
starting from static structural models. It is shown that the pathways have a relatively
low dimensionality at distances <4 Å, and since the ions are randomly distributed
the blocking of pathways is very effective. It is also shown that the most local
neighborhood (<0.7 Å) of a site in the pathway of ion A do not change significantly
when ions of type B is introduced into the glass.

Paper II
LOCAL DIMENSIONALITY AND INTERMEDIATE RANGE ORDERING OF ION CON-
DUCTION PATHWAYS IN BORATE GLASSES.

When silver, lithium and sodium di-borate glasses are doped by metal halide salts
(AgI, NaCl and LiCl), a similar increase in conductivity occurs in all three systems.
Earlier studies of RMC modeled structures from neutron and X-ray diffraction data
have revealed that although all three glasses have very similar SRO in the boron
network, their intermediate-range structure is highly dependant on the type of mobile
ion. These differences are in particularly large for the highly doped glasses, where
AgI is homogeneously introduced in the glass, causing an expansion of the borate
network, whereas LiCl and NaCl are more inhomogeneously distributed, forming
microscopic clusters of salt ions.

The ionic pathways of these RMC models were calculated using the bond-valence
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method and their topography is compared to that of the glass structure. It is shown
that the Ag pathways have correlations similar to that of the borate network, indi-
cating that the Ag ions are moving in channels adjacent to the borate network in
both the undoped and doped glasses. In the LiCl and NaCl glasses a direct compar-
ison of correlations were not as relevant due to the lack of well defined intermediate
range order in the highly doped glasses, whereas some similarities between borate
network correlations and pathway correlations could be seen in the undoped glasses.
The large differences seen for both atomic structure and pathways in the three glass
systems indicate that the intermediate range order does not play a direct role in ionic
conductivity in these systems

Paper III
COMPARATIVE STUDY OF ION CONDUCTING PATHWAYS IN BORATE GLASSES

Here we extend our study of the di-borate glasses in paper II. The two main
additions in this paper is; a) Importance of oxygen coordination in the pathway and
b) the importance of the intermediate range order.

The importance of oxygen coordination in highly doped glasses has been a mat-
ter of debate. It has been argued that the mobile ions are mainly coordinated to
halide ions, providing them with fast conduction pathways similar to those in the
corresponding FIC crystals, and that slow, oxygen coordinated bridges connect these
regions. Here we show that the mobile ions have a relatively high preference for
mixed oxygen/halide coordination.

The hypothesis that the relatively well defined order in AgI doped di-borate glass
contributes to its high ionic conductivity was tested by generating a set of more or
less random glass models. In the AgI doped glass, the volume of the ionic pathways
is not significantly changed as long as the borons and oxygens are coordinated in a
network structure. In LiCl and NaCl doped di-borates, a pronounced drop in path-
way volume was seen in the random structures. Our conclusion form these findings
is that the high conductivity of AgI doped glasses is primarily an effect of the local
environment of the mobile ion, and not the unusually ordered intermediate-range
structure.

Paper IV
STRUCTURE OF AGxNA(1−x)PO3 GLASSES BY NEUTRON DIFFRACTION AND RE-
VERSE MONTE CARLO MODELLING

The mixed Ag/Na metaphosphate glass system shows and interesting low mixed
mobile ion effect in its ionic conductivity. The variation of dc-conductivity with Ag
to Na exchange is close to linear, though a minimum, ca 0.5 decades under σdc of
the single Na glass is clear at 75 % Na content. An investigation of this system
and a comparison of our findings with those from the mixed Li/Rb metaphosphate
system earlier studied (in paper 1 and refs. (102; 60)) can thus provide us with
important insight into the MMIE. AgxNa1−xPO3 glasses of compositions x={1, 0.75,

50



0.5, 0.25,0} were measured by neutron and X-ray diffraction, whereafter structure
models of all compositions where created using reverse Monte Carlo modeling with
bond valence constraints. We found that, unlike the mixed Li/Rb system, there are
almost no changes in the structure when Na replaces Ag in the glass. The two mobile
ions show a preference to similar sites in the glass network. Our conclusion of this
study is that there is a low energy mismatch for an Ag ion to hop into an Na site and
vice versa and that the two ions can share pathways without blocking each others
movement.

Paper V
MIXED MOBILE ION EFFECT AND COOPERATIVE MOTIONS IN SILVER-SODIUM

PHOSPHATE GLASSES

We continue our study of the AgxNa1−xPO3 glass system from paper IV by cal-
culating the pathways of Ag and Na ion using the bond valence method. We find that
the structural changes are negligible also from the perspective of the ionic pathways,
although a slight increase in their volume occurs (for both Ag and Na pathways) at
the Ag-richer compositions. Furthermore, the two ions share pathways to a large ex-
tent and can thus participate in the same conduction mechanism. if the weak MMIE
we do see in the system originates in the same blocking effect as earlier described
for the Li/Rb metaphosphate system, it can only involve a very small subset of the
unlike ions. In this article we also propose that the weak non-linearity could be due
to a dynamic effect, due to the very different masses of the ions.

Paper VI
STRUCTURE OF LIxRB1−xPO3 GLASSES NEAR THE GLASS TRANSITION

While a wide range of glasses follow an Arrhenius behavior of the dc-conductivity
below Tg, a deviation from this can be seen as the temperature is raised above it. In
this paper, we have studied the temperature dependence of the glass structure in the
mixed Li/Rb metaphosphate system, from room temperature up to 10-30 K above
the glass temperature. We find that there is no significant changes of the PO-network
throughout this temperature range and calculations of the bond valence pathways re-
veal that the adaptation of the glass to the mobile ion show no significant change
either. Any deviation from Arrhenius behavior is proposed to be caused by in in-
creased network dynamics akin to the dynamic structure model.

My contribution to the papers

In all papers I have been responsible for writing the manuscript and produced most
figures. Additionally, I have performed all bond valence calculations and the subse-
quent analysis of the pathways using software written by me in C++ and Matlab.

In papers IV-VI I have additionally prepared glass samples for neutron and X-ray
diffraction, taken part in the neutron diffraction experiments at ISIS, corrected both
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neutron and X-ray data and modeled the glass structures using RMCA.
Discussions with Stefan Adams (papers I–III, V) and Jan Swenson (I–VI) have

contributed substantially to the final content of the papers.
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[78] A. Mellergård and R. L. McGreevy, in Materials Science Forum, Vol. 378-
381 of 7th European Powder Diffraction Conference, edited by R. Delguez
and E. J. Mittemeijer (PUBLISHER, Barcelona, 2001), pp. 71–76.

60



Bibliography
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